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A previous paper introduced the concept of using Monte Carlo Simulation to ‘back-transform’ a normal 
scores variogram to a true values variogram.  This note compares the results obtained using this method 
with those obtained using Hermite polynomials.  It is shown that the transformation results are the same. 

Introduction 

It is well established that variograms calculated from untransformed data can be unstable and erratic due to 
the nature of the data distribution.  Outliers in the data are the main cause of this instability.  Transforming 
the data to a standard normal distribution substantially reduces the effect of these outliers.  Variograms 
calculated from this transformed data are therefore much more consistent and stable.  Two methods have 
been devised for transforming the variogram calculated from standard normal data to a variogram that is in 
the units of the original data.  One idea is to use Monte Carlo Simulation (MCS) to sample a bivariate 
distribution with its correlation taken from the normal scores variogram (Wilde and Deutsch, 2005).  This 
procedure is repeated at each lag.  The other method is to use Hermite Polynomials as suggested by John 
Vann and Henry Sans (Vann, 2005).  Each is remarkably robust and provides a consistent and stable 
original data variogram.  The details of how each transform is performed are given.  The purpose of this 
paper is to compare the results of each transform method and to determine if one is more applicable than 
the other.   

Methods 

Common to both methods is the need for an experimentally calculated normal scores variogram.  To obtain 
this variogram, the data must be transformed to a standard normal distribution.  It may be necessary to 
weight the data by declustering prior to performing this transformation.  If declustering weights are used in 
the transformation, the variance of the data must also be calculated by using these weights.  The variance is 
an important input parameter for the MCS method.  The transformation table is an important input for both 
methods and must therefore be saved for future use.  Once the data has been transformed, the experimental 
variogram can be calculated.  This variogram will have a sill of 1.0 as that is equivalent to the variance for 
a standard normal distribution.  It should be a good deal more stable and consistent than the variogram 
calculated from the normal scores.  The variogram transformations can now be performed using the normal 
scores variogram and the transformation table.   

MCS/Mapping 

The MCS method has been modified somewhat compared to the original idea presented in Wilde and 
Deutsch, 2005.  It was seen that the step of modeling the normal variogram was not necessary and thus, this 
time consuming step was removed from the process.  The process of modeling is now reserved solely for 
the original data variogram.  

The MCS method is performed one lag at a time.  Therefore, the following procedure is repeated for each 
lag.  The first step is to determine the correlation coefficient at that lag, h.  The relation between the 
variogram and the correlation coefficient is as follows: 

1 yρ γ= −  
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where yγ  is the normal scores variogram value at h.  The correlation coefficient is used to generate a 

bivariate Gaussian distribution characterized by ρ.  This is done by generating a large number of pairs of 
random numbers in [0,1].  These pairs are then transformed into standard normal space as Y1 and Y2.  They 
are then given the appropriate correlation by the following equation: 

2
1 21hY Y Yρ ρ= ⋅ + − ⋅  

The new correctly correlated pair of Y1 and Yh are then back transformed into units of the original data as 
Z1 and Z2 according to the initial normal scores transformation performed on the original variable.  The 
squared difference of Z1 and Z2 is calculated for each of the paired samples. The average of these squared 
differences is taken to be the value of the original variable variogram for the specific h. This process is then 
repeated for each h.  The variogram can be normalized by dividing by the variance of the original data.  
This variogram can then be fit and used for modeling and estimation purposes.  It is unbiased and much 
more stable than the variogram calculated directly from the original data.   

The original mapping method was identical in all aspects to this except the derivation of ρ.  The variogram 
value used in obtaining the correlation was taken from an explicit model of the variogram.  This made the 
mapped original data variogram much smoother.  It also allowed any number of lags to be mapped at any 
value of h.  But it also meant that the time consuming modeling process had to be repeated twice for any 
original data variogram: both the normal scores and the original data variograms had to be fit.  This could 
become extremely time consuming and tedious where there are numerous original data variograms needed.  
Eliminating the step of modeling the normal scores variogram has effectively cut in half the time needed to 
arrive at a variogram model for the original data.   

Hermite Polynomials 

The method using Hermite polynomials employs an anamorphosis function to calculate the transformed 
variogram.  The anamorphosis is a function defined by a polynomial expansion that is fit to the data.  Once 
the polynomials have been fit, the function provides a mapping of the point variable Z to the Gaussian 
variable Y and vice versa:   
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where pφ  is a fitted coefficient for each term of the polynomial expansion, and Hp[y(u)] is the Hermite 
polynomial value defined by the term of the expansion and the y value.  The previous equation is referred to 
as the Gaussian anamorphosis.  The number of terms in the polynomial expansion is usually limited to a 
number less than 100.  The more terms used, the better the polynomial fitting will be, but the programs will 
run slower. 

Hermite polynomials are a family of orthogonal polynomials that are related to the normal distribution.  
They are defined by Rodrigues’ Formula: 
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where g(y) is the probability of the value y for a standard normal distribution.  The first two Hermite 
polynomials, order 0 and 1, are given by: 

0 1( ) 1              ( )H y H y y= = −  

Higher order polynomials can be calculated with the following recursive formula when p ≥ 2: 
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Hence, it is easy to calculate the Hermite polynomials for a given order p, starting from a normal value y.   

We now need to fit the anamorphosis function to the data by calculating the φ coefficients.  The first order 
coefficient is: 
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or the expected value of Z(u).  Higher order φ coefficients are 
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This integral can be approximated with the sample data as a finite summation: 
n
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An example showing how these coefficients are used to fit the data is included herein.  Since there is no 
correlation between the different polynomials, the variance of the polynomial expansion is: 
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where Var{Z(u)} is the variance of Z at the point support (Neufeld, 2005).   

Once the coefficients are calculated, the variogram transformation can be performed using the relation 
given by Vann and Sans (Vann, 1995): 
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 are the coefficients of the Hermite polynomials which we have chosen to represent as 2
pφ .  We 

have also chosen to standardize the variogram to have a sill of 1.0 by dividing by the variance.  The 
standardized original data variogram is calculated as follows: 
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where yγ  is the normal variogram value and zγ  is the original data variogram value.  With transformed 

values calculated for each value of yγ , the resulting variogram can be modeled for use in estimation etc.  
As with the MCS method, this variogram is unbiased and a good deal more stable than that calculated from 
the original data.   
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Example of Distribution Fitting with Hermite Polynomials 

This section details how Hermite polynomials are used to fit a distribution.  It also shows the effect that 
using only a few polynomials will have.  The first step is to calculate the Hermite polynomials.  These 
polynomials are well defined.  The first six Hermite polynomials are shown below: 

 
The recursive formula previously mentioned gives the higher order polynomials.  We now calculate the 
coefficients using the summation approximation given previously and recalling that 0 { ( )}E Zφ = u .  We 
calculate φp and Hp for different values of p to allow us to compute Z(u). 

We will use Hermite polynomials to fit the typical log-normal distribution shown in Figure .  As the figure 
shows, the distribution has a mean of 98.625 and ranges from 5.448 to 882.042.  For p=0, φ0=98.625 and 
H0(y)=1.  Recall that Z(u) is defined as the sum of the product of φp and Hp(y) for all p.  We will start by 
using only one value for p, p=0.   
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We see that z(u) = 98.625 when just one polynomial is used.  Obviously this is a very poor fit as shown in 
Figure 2a.   

We will now use two Hermite polynomials, that is, two values for p: p=0,1.  For p=1, φ1=-81.833 and 
H1(y)= -y.  Summing the product of these values with the product for p=0, we obtain the following: 
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This defines a normal distribution with mean 98.625 and standard deviation 81.833 as shown in Figure 2b.  
This is also a poor fit so we continue, utilizing more polynomials by increasing p.   

We will now use three Hermite polynomials: p=0,1,2.  φ2=45.810 and H2(y) is as defined above.  The three 
polynomials give the following: 
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This defines a lognormal distribution with mean 97.946 and standard deviation 55.339 as shown in Figure 
2c.   

The results for additional Hermite polynomials are also shown in Figure 2.  Distributions were constructed 
for p-values of 1, 2, 3, 4, 5, 10, 20, 30, 50, and 100.  It is easily seen that using more polynomials creates a 
better fit of the distribution. 
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Variogram Comparison Examples 

We will now examine the results of the variogram comparison.  Ten variograms were calculated from the 
normal scores of ten variables from four different data sets.   

The 4133 dataset comes from the bench of a copper mine in Peru.  Variograms are calculated from the 
normal scores of three variables: bismuth, copper and zinc.  The results of the variogram transformation for 
the three variables are shown in Figure 3.  The two transformed variograms lie nearly on top of each other 
and in all three cases the correlation between them is perfect.   

The Amoco dataset contains three variables from which we generate normal score variograms.  These are 
permeability, porosity, and seismic.  The spatial variability of these variables is such that even with a 
normal transform, the variogram remains noisy and erratic.  This is good for showing the robustness and 
similarity of each transform.  The results of the variogram transformation are shown in Figure 4.  Again, 
the two transformed variograms follow each other exactly and for two of the three variables the correlation 
is perfect.   

The dallas dataset has only one variable, lead.  The variogram calculated from the normal transformed lead 
data is shown in Figure 5 along with the variograms generated by the two transformation methods.  The 
two transformed variograms are identical and exhibit perfect correlation. 

Finally, the variables used from the red dataset are silver, copper, and zinc.  The variograms generated by 
this dataset by both calculation and transformation are shown in Figure 6.  The two transformed variograms 
are again identical with perfect correlation in all three cases.   

Comparison 

Each method of transformation is remarkably simple to implement.  The MCS method requires only the 
transformation table and the calculated normal scores variogram as input.  The Hermite method requires the 
transformation table, the calculated normal scores variogram, and the number of polynomials the user 
wishes to employ.  Too few polynomials will create a poor fit of the data and too many take a long time to 
calculate.  It is recommended that 30-100 polynomials be used in the transformation.  For each of the 
examples presented in this note, 100 polynomials were used and CPU time was no issue at all.  Choosing 
the number of polynomials to employ is trivial and should not deter from the simplicity of the method.  
Each method is equally easy to employ and both create the same results. 

Conclusions 

The benefit of doing this transformation is that we end up with variograms in the units of the original data 
without having to calculate them from the original data.  They are calculated from the normally 
transformed data which creates a much more stable and consistent variogram.  The results of each 
variogram transformation method are essentially the same.  Both rely on the transformation table created 
during the initial data transformation, although each utilize this table in a different manner.   
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Figure 1:  A typical log-normal distribution.  This distribution is fit using Hermite polynomials. 
 

a. b. c.

d. e. f.  

g. h. i.  
 
Figure 2:  Distribution fitting using different numbers of Hermite polynomials.  The number of 
polynomials used are 1, 2, 3, 4, 5, 10, 15, and 20 for plots a to i, respectively. 
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Figure 3:  Variogram transformation results for bismuth and zinc for one dataset.  The normal scores 
variogram is shown in green, the variogram transformed by the Hermite method is shown in red while the 
variogram transformed by the MCS method is shown in black. 
 

 
Figure 4:  Variogram transformation results for permeability and porosity from Amoco.dat.  The normal 
scores variogram is shown in green, the variogram transformed by the Hermite method is shown in red 
while the variogram transformed by the MCS method is shown in black. 
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Figure 5:  Variogram transformation results for lead from dallas.dat.  The normal scores variogram is 
shown in green, the variogram generated by the MCS method of transformation is black, and the Hermite 
variogram is red.  The scatterplot shows the similarity between the MCS and Hermite methods.  
 

 

 
Figure 6:  Variogram transformation results for copper and zinc from red.dat.  The variogram shown in 
green is the normal score transformed data.  The black variogram is the one calculated by the MCS 
transform.  The red variogram is the one calculated by the Hermite transform. 


